3.5.44 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^4 (d+e x)} \, dx\) [444]

3.5.44.1 Optimal result
3.5.44.2 Mathematica [A] (verified)
3.5.44.3 Rubi [A] (verified)
3.5.44.4 Maple [B] (verified)
3.5.44.5 Fricas [A] (verification not implemented)
3.5.44.6 Sympy [F(-1)]
3.5.44.7 Maxima [F]
3.5.44.8 Giac [B] (verification not implemented)
3.5.44.9 Mupad [F(-1)]

3.5.44.1 Optimal result

Integrand size = 40, antiderivative size = 286 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 d x^3}-\frac {\left (\frac {c}{a e}-\frac {5 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 a^2 d^3 e^2 x}-\frac {\left (c d^2-a e^2\right ) \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 a^{5/2} d^{7/2} e^{5/2}} \]

output
-1/16*(-a*e^2+c*d^2)*(5*a^2*e^4+2*a*c*d^2*e^2+c^2*d^4)*arctanh(1/2*(2*a*d* 
e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^ 
2)^(1/2))/a^(5/2)/d^(7/2)/e^(5/2)-1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2)/d/x^3-1/12*(c/a/e-5*e/d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2 
+1/24*(-5*a*e^2+3*c*d^2)*(3*a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2) 
^(1/2)/a^2/d^3/e^2/x
 
3.5.44.2 Mathematica [A] (verified)

Time = 10.17 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (3 c^2 d^4 x^2-2 a c d^2 e x (d-2 e x)+a^2 e^2 \left (-8 d^2+10 d e x-15 e^2 x^2\right )\right )}{x^3}-\frac {3 \left (c^3 d^6+a c^2 d^4 e^2+3 a^2 c d^2 e^4-5 a^3 e^6\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{24 a^{5/2} d^{7/2} e^{5/2}} \]

input
Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^4*(d + e*x)),x]
 
output
(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt[e]*(3*c^2*d^4*x^2 - 
2*a*c*d^2*e*x*(d - 2*e*x) + a^2*e^2*(-8*d^2 + 10*d*e*x - 15*e^2*x^2)))/x^3 
 - (3*(c^3*d^6 + a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*ArcTanh[(Sqr 
t[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c*d* 
x]*Sqrt[d + e*x])))/(24*a^(5/2)*d^(7/2)*e^(5/2))
 
3.5.44.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1215, 1237, 27, 1237, 27, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x^4 (d+e x)} \, dx\)

\(\Big \downarrow \) 1215

\(\displaystyle \int \frac {a e+c d x}{x^4 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}dx\)

\(\Big \downarrow \) 1237

\(\displaystyle -\frac {\int -\frac {a e \left (c d^2-4 c e x d-5 a e^2\right )}{2 x^3 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{3 a d e}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {c d^2-4 c e x d-5 a e^2}{x^3 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 1237

\(\displaystyle \frac {-\frac {\int \frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right )+2 c d e \left (c d^2-5 a e^2\right ) x}{2 x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 a d e}-\frac {\left (\frac {c d}{a e}-\frac {5 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 x^2}}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right )+2 c d e \left (c d^2-5 a e^2\right ) x}{x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 a d e}-\frac {\left (\frac {c d}{a e}-\frac {5 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 x^2}}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {-\frac {-\frac {3 \left (c d^2-a e^2\right ) \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 a d e}-\frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a d e x}}{4 a d e}-\frac {\left (\frac {c d}{a e}-\frac {5 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 x^2}}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {-\frac {\frac {3 \left (c d^2-a e^2\right ) \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{a d e}-\frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a d e x}}{4 a d e}-\frac {\left (\frac {c d}{a e}-\frac {5 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 x^2}}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\frac {3 \left (c d^2-a e^2\right ) \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 a^{3/2} d^{3/2} e^{3/2}}-\frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a d e x}}{4 a d e}-\frac {\left (\frac {c d}{a e}-\frac {5 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 x^2}}{6 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 d x^3}\)

input
Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^4*(d + e*x)),x]
 
output
-1/3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x^3) + (-1/2*(((c*d)/( 
a*e) - (5*e)/d)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x^2 - (-(((3* 
c*d^2 - 5*a*e^2)*(c*d^2 + 3*a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e* 
x^2])/(a*d*e*x)) + (3*(c*d^2 - a*e^2)*(c^2*d^4 + 2*a*c*d^2*e^2 + 5*a^2*e^4 
)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a* 
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*a^(3/2)*d^(3/2)*e^(3/2)))/(4*a* 
d*e))/(6*d)
 

3.5.44.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1215
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/( 
(d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + 
 c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 - 
 b*d*e + a*e^2, 0] && GtQ[p, 0]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 1237
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b* 
x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1) 
*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[ 
(c*d*f - f*b*e + a*e*g)*(m + 1) + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m 
+ 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && LtQ[m, -1 
] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 
3.5.44.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2058\) vs. \(2(256)=512\).

Time = 1.16 (sec) , antiderivative size = 2059, normalized size of antiderivative = 7.20

method result size
default \(\text {Expression too large to display}\) \(2059\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4/(e*x+d),x,method=_RETURNVE 
RBOSE)
 
output
1/d*(-1/3/a/d/e/x^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-1/2*(a*e^2+c*d 
^2)/a/d/e*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-1/4*(a*e 
^2+c*d^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a 
*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^ 
2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c 
*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^ 
2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+2*c/a*(1 
/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1 
/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/ 
(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+1/2 
*c/a*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^ 
2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/ 
2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e 
)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))))+e^2/d^3*(-1/a/d/e/x 
*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+( 
a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+ 
c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1 
/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e 
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+2*c/a*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/ 
c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2...
 
3.5.44.5 Fricas [A] (verification not implemented)

Time = 1.23 (sec) , antiderivative size = 558, normalized size of antiderivative = 1.95 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\left [-\frac {3 \, {\left (c^{3} d^{6} + a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - 5 \, a^{3} e^{6}\right )} \sqrt {a d e} x^{3} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (8 \, a^{3} d^{3} e^{3} - {\left (3 \, a c^{2} d^{5} e + 4 \, a^{2} c d^{3} e^{3} - 15 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (a^{2} c d^{4} e^{2} - 5 \, a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, a^{3} d^{4} e^{3} x^{3}}, \frac {3 \, {\left (c^{3} d^{6} + a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - 5 \, a^{3} e^{6}\right )} \sqrt {-a d e} x^{3} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (8 \, a^{3} d^{3} e^{3} - {\left (3 \, a c^{2} d^{5} e + 4 \, a^{2} c d^{3} e^{3} - 15 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (a^{2} c d^{4} e^{2} - 5 \, a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, a^{3} d^{4} e^{3} x^{3}}\right ] \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4/(e*x+d),x, algorithm 
="fricas")
 
output
[-1/96*(3*(c^3*d^6 + a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*sqrt(a*d 
*e)*x^3*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*s 
qrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(8*a^3*d^3*e^3 - (3*a*c 
^2*d^5*e + 4*a^2*c*d^3*e^3 - 15*a^3*d*e^5)*x^2 + 2*(a^2*c*d^4*e^2 - 5*a^3* 
d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^3*d^4*e^3*x^3) 
, 1/48*(3*(c^3*d^6 + a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*sqrt(-a* 
d*e)*x^3*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + 
 (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3 
*e + a^2*d*e^3)*x)) - 2*(8*a^3*d^3*e^3 - (3*a*c^2*d^5*e + 4*a^2*c*d^3*e^3 
- 15*a^3*d*e^5)*x^2 + 2*(a^2*c*d^4*e^2 - 5*a^3*d^2*e^4)*x)*sqrt(c*d*e*x^2 
+ a*d*e + (c*d^2 + a*e^2)*x))/(a^3*d^4*e^3*x^3)]
 
3.5.44.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**4/(e*x+d),x)
 
output
Timed out
 
3.5.44.7 Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{4}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4/(e*x+d),x, algorithm 
="maxima")
 
output
integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^4), x)
 
3.5.44.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 912 vs. \(2 (256) = 512\).

Time = 0.33 (sec) , antiderivative size = 912, normalized size of antiderivative = 3.19 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\frac {{\left (c^{3} d^{6} + a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - 5 \, a^{3} e^{6}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{8 \, \sqrt {-a d e} a^{2} d^{3} e^{2}} - \frac {3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} c^{3} d^{8} e^{2} + 51 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{3} c^{2} d^{6} e^{4} + 105 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{4} c d^{4} e^{6} + 33 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{5} d^{2} e^{8} + 16 \, \sqrt {c d e} a^{4} c d^{5} e^{5} + 48 \, \sqrt {c d e} a^{5} d^{3} e^{7} + 8 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a c^{3} d^{7} e + 72 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{2} c^{2} d^{5} e^{3} + 24 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{3} c d^{3} e^{5} - 40 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{4} d e^{7} + 48 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a^{2} c^{2} d^{6} e^{2} + 144 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a^{3} c d^{4} e^{4} - 3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{5} c^{3} d^{6} - 3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{5} a c^{2} d^{4} e^{2} - 9 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{5} a^{2} c d^{2} e^{4} + 15 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{5} a^{3} e^{6}}{24 \, {\left (a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}\right )}^{3} a^{2} d^{3} e^{2}} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4/(e*x+d),x, algorithm 
="giac")
 
output
1/8*(c^3*d^6 + a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*arctan(-(sqrt( 
c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqr 
t(-a*d*e)*a^2*d^3*e^2) - 1/24*(3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x 
 + a*e^2*x + a*d*e))*a^2*c^3*d^8*e^2 + 51*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 
+ c*d^2*x + a*e^2*x + a*d*e))*a^3*c^2*d^6*e^4 + 105*(sqrt(c*d*e)*x - sqrt( 
c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^4*c*d^4*e^6 + 33*(sqrt(c*d*e)*x 
- sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^5*d^2*e^8 + 16*sqrt(c*d*e 
)*a^4*c*d^5*e^5 + 48*sqrt(c*d*e)*a^5*d^3*e^7 + 8*(sqrt(c*d*e)*x - sqrt(c*d 
*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a*c^3*d^7*e + 72*(sqrt(c*d*e)*x - s 
qrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^2*c^2*d^5*e^3 + 24*(sqrt(c 
*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^3*c*d^3*e^5 - 4 
0*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^4*d*e^ 
7 + 48*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a 
*d*e))^2*a^2*c^2*d^6*e^2 + 144*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 
 + c*d^2*x + a*e^2*x + a*d*e))^2*a^3*c*d^4*e^4 - 3*(sqrt(c*d*e)*x - sqrt(c 
*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*c^3*d^6 - 3*(sqrt(c*d*e)*x - sqrt 
(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a*c^2*d^4*e^2 - 9*(sqrt(c*d*e)* 
x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a^2*c*d^2*e^4 + 15*(sqr 
t(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a^3*e^6)/((a*d 
*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2)^3...
 
3.5.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4 (d+e x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^4\,\left (d+e\,x\right )} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^4*(d + e*x)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^4*(d + e*x)), x)